

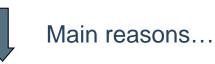
SBTool^{PT} - Adaptation of the Global SBTool to the Portuguese Context

University of Minho Engineering School Department of Civil Engineering Portugal

International Initiative for a Sustainable Built Environment

Luís Bragança & Ricardo Mateus

Overview


- To present the principles that were in the genesis of the Building Sustainability Assessment and Certification System "SBTool^{PT}"
- To present the **Portuguese version of the SBTool**

> The sustainable assessment is generally based on **lists of indicators**.

Different Indicators have been developed by institutions, organizations and industries locally, nationally and globally.

• Political, Technological and Cultural differences between countries;

 The dependence on a subjective valuation of various parameters in most methods developed so far.

Different indicators (methods) = **Different results**

SYSTEM GOALS

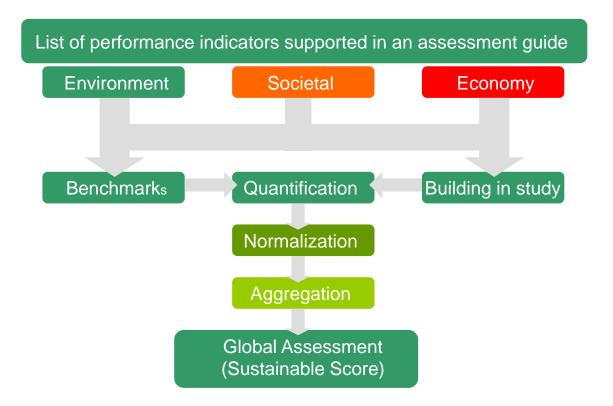
Develop a regional system adapted to the national context based on the global SBTool methodology;

To be harmonized with the standards ISO CEN/TC350 "Sustainability of Construction Works - Assessment of Environmental Performance of Buildings";

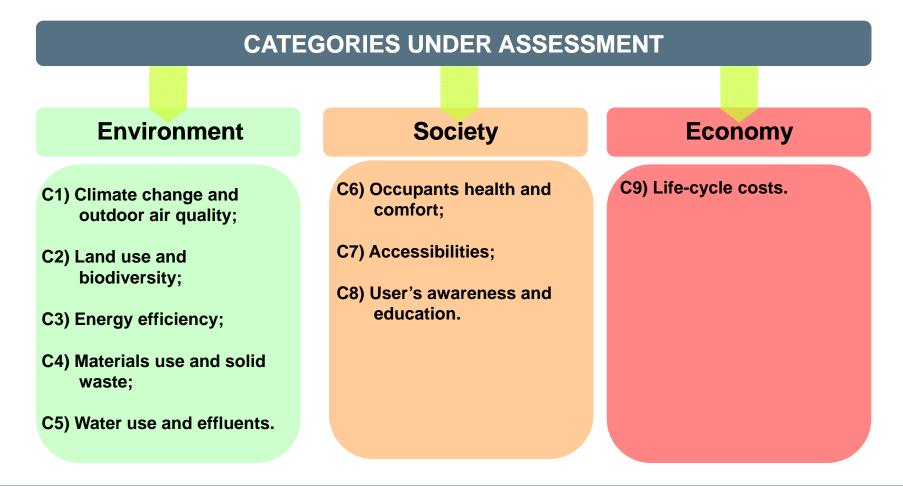
Include the three dimensions of sustainable development;

Provide a list of parameters that is sufficiently broad to include the most important building impacts and at the same time as small as possible to boost its practical use.

SYSTEM GOALS (cont.)


- Limit the use of subjective criteria and/or quality, which are difficult to assess (e.g., the aesthetic and technological innovation);
- Increase the viability of the results, through the use of LCA methods in environmental performance evaluation;
- Develop an assessment system and a certificate that are easily understood and assimilated by all stakeholders.

BUILDING SUSTAINABILITY ASSESSMENT METHODOLOGY


Structure of the Methodology SBTool^{PT} - H

DIMENSIONS, CATEGORIES E PARAMETERS

Environmental categories and parameters (15)

Dimension	Categories	Parameters		
DA – Environmental	C1 – Climate change and outdoor air quality	 Embodied environmental impacts 	P1	
	C2 – Land use and biodiversity	Urban soil use	P2	
		Land waterproofed index	P3	
		Pre-developed land use	P4	
		Use of local plants	P5	
		Heat-island effect	P6	

Environmental categories and parameters (cont.)

Dimension	Categories	Parameters		
	C3 - Energy Efficiency	 Primary energy consumption 	P7	
		 In-situ energy production from renewables 	P8	
	C4 – Materials and solid waste	Building materials re-use	P9	
		Building materials recycling content		
DA –		Use of certified organic materials	P11	
Environmental		Use of cement substitutes materials on concrete	P12	
		Household waste management	P13	
	C5 – Water efficiency and effluents	 Fresh water consumption 		
		Water reuse and recycling	P15	

Societal categories and parameters (8)

Dimension	Categories	Parameters	P _{ID}
	C6 – Occupant's health and comfort C7 - Accessibilities	Natural ventilation potential	P16
		Embodied VOC content	P17
		Thermal comfort	
		Natural lighting potential	P19
DS –		Acoustic comfort	P20
Societal		 Acessibility to public transportation 	P21
		 Acessibilities to urban amenities 	P22
	C8 – Users education and awareness	 Availability and content of the Building User's Manual 	P23

Economic categories and parameters (2)

Dimension	Categories	Parameters	P _{ID}
DE –		Capital costs	P24
Economy	C9 – Life-cycle cost	Operational costs	P25

QUANTIFICATION OF PARAMETERS

ENVIRONMENTAL

LCA database (example)

Solução construtiva	Parede dupla o na caixa-de-ar		alvenaria de tijolo furado (15cm+11cm) com isolamento térmico em EPS					Ref: Par 1	
	Fase de ciclo de vida	Categorias de impacte ambiental de LCA					Energia incorporada		
		ADP	GWP	ODP	AP	POCP	EP	ENR	ER
	Cradle-to-gate	3.70E-01	9.53E+01	1.02E-04	1.91E-01	1.13E-02	2.54E-02	8.68E+02	1.01E+02
	Fim de vida	2.08E-01	3.17E+01	5.00E-06	1.42E-01	5.40E-03	2.95E-02	4.75E+02	2.83E+00
	Total	5.78E-01	1.27E+02	1.07E-04	3.33E-01	1.67E-02	5.49E-02	1.34E+03	1.04E+02
	Comentários :	 Materiais Considerados: Tijolo furado, poliestireno expandido extrudido (isolam térmico), argamassa de assentamento e reboco (revestimento) 				ento			
		Método(s) de LCA: CML 2 baseline 2000 versão 2.04 (para avaliar o Impacto ambiental) e Cumulative Energy Demand versão 1.04 (Para avaliar a energia)					nbiental) e		
		Bibliotecas do LCI: Ecoinvent system process							

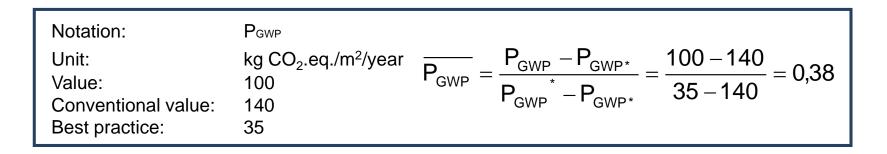
QUANTIFICATION OF PARAMETERS (cont.)

SOCIETAL

Using one of the different analytical methods or through experimental monitoring.

ECONOMIC

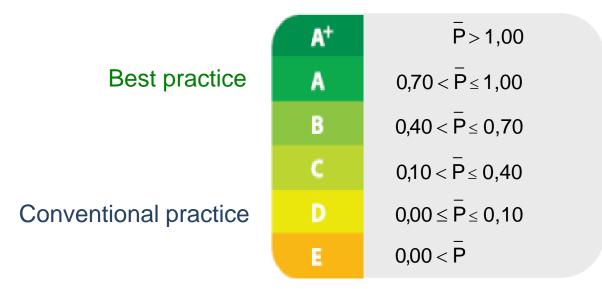
Using costs databases or through the use of external Life-cycle costing (LCC) tools.



Normalization of Parameters

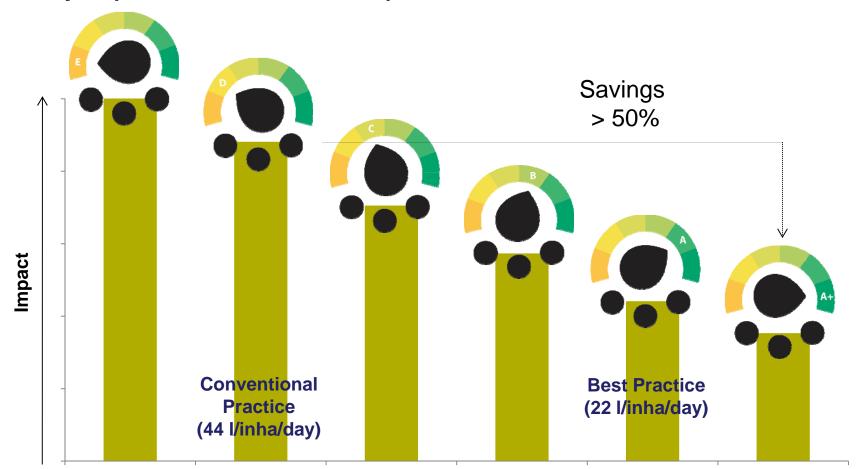
- The objective is to avoid the scale effects in the aggregation of parameters inside each indicator and to solve the problem that some parameters are of the type "higher is better" and others "lower is better".
- It is a way to compare the performance of the solution with the best and conventional practices (Benchmarks):

As an example, the normalization of the total Global Warming Potential is done as following:



NORMALIZATION OF PARAMETERS

The adopted normalization system, converts the performance values obtained for each parameter on a scale between 0 (reference value / conventional) and 1 (best value).


 \blacktriangleright The quantified values are then converted in a graded scale, from A+ to E:

Example (Parameter P4 - Water)

17 October 2011

Aggregation of Parameters

- The objective is to synthesize in one value the average environmental performance of a construction inside each category.
- > The methodology uses a **complete aggregation method**:

$$\mathbf{I}_{\text{ENV}} = \sum_{i=1}^{n} \mathbf{W}_{i} \cdot \mathbf{P}_{i}$$
with,

$$\mathbf{I}_{\text{ENV}} - \text{Weighted average of all normalize environmental} parameters;
$$\mathbf{W}_{i} - \text{Weight of the ith parameter;} P_{i} - \text{Weight of the ith parameter.}$$$$

Difficulties in this method lie in setting the weight of each parameter and in the possible compensation between parameters.

PARAMETERS AGREGATION - WEIGHTS

Environmental (US EPA's TRACI method)

Table 1: Relative importance of each environmental impact according to EPA, U.S.A.

ID	Categorias de impacte ambiental	Pesos (%)
GWP	Potencial de Aquecimento Global	16
AP	Potencial de Acidificação	5
EP	Potencial de Eutrofização	5
FFDP	Potencial de Esgotamento das Reservas de Combustíveis Fósseis	5
IAQ	Qualidade do Ar Interior	11
HA	Alteração dos Habitats	16
WI	Consumo de Água	3
CAP	Poluição da Atmosfera	6
POCP	Potencial de Oxidação Fotoquímica (smog)	6
ODP	Potencial de Destruição da Camada de Ozono	5
ET	Toxicidade Ecológica	11
HT	Toxicidade Para o Ser Humano	11

• The weights of the environmental parameters considered in SBTooIPT result from the distribution of the weights of the environmental categories of TRACI method (extent, intensity and duration of impact).

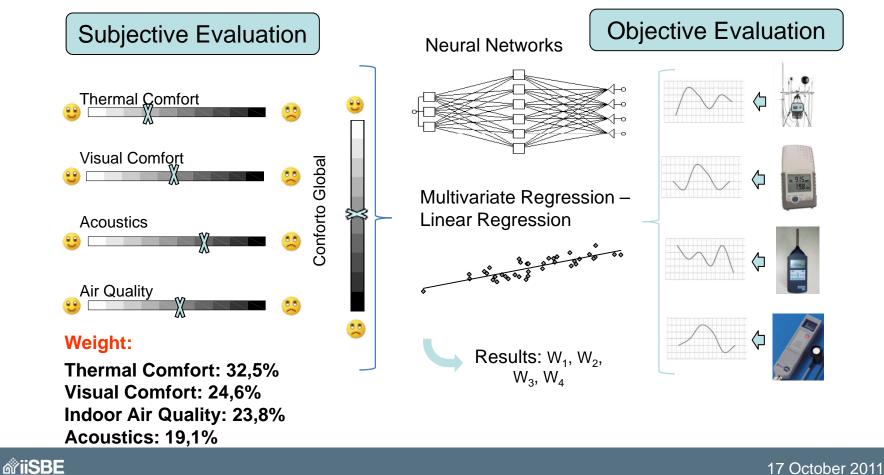
PARAMETERS AGREGATION - WEIGHTS (cont.)

A scientific based methodology was developed to quantify the relative importance of each comfort and health parameter in global comfort perceived for building occupants.

The perceived global comfort (C_G) result from the combination of various comfort parameters (P_i):

 $C_{G} = P_{1} \times W_{1} + P_{2} \times W_{2} + P_{3} \times W_{3} + P4 \times W_{4}$

Each parameter affects differently the global comfort, since it presents a different **subjective** weight (W_i).




PARAMETERS AGREGATION – WEIGHTS (cont.)

Methodology

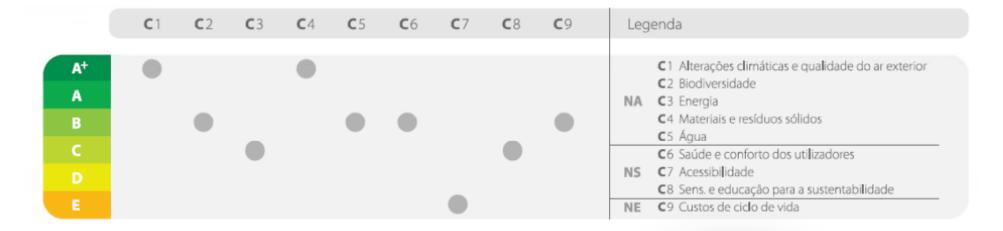
PORTUGAL

WEIGHTS (Categories)

Dimension	Cate	gory	Weight (%)
Environmental	C1	Climate change and outdoor air quality	13
	C2	Land use and biodiversity	20
	C3	Energy efficiency	32
	C4	Materials and waste management	29
	C5	Water efficiency	6
Societal	C6	Occupant's health and comfort	60
	C7	Accessibilities	30
	C8	Awareness and education for sustainability	10
Economy	C9	Life-cycle costs	100

WEIGHTS (Sustainability dimensions)

Dimension		Weight (%)
Environmental	DA	40
Societal	DS	30
Economy	DE	30



REPRESENTATION AND GLOBAL ASSESSMENT OF A PROJECT

> The assessment output is presented at two levels:

Level 1: Categories

Figure 2: **SBTool^{PT}-H** output for a hypothetical building - performance of the solution presented at the level of the different categories.

REPRESENTATION AND GLOBAL ASSESSMENT OF A PROJECT (cont.)

Level 2: Sustainable dimensions and sustainable score

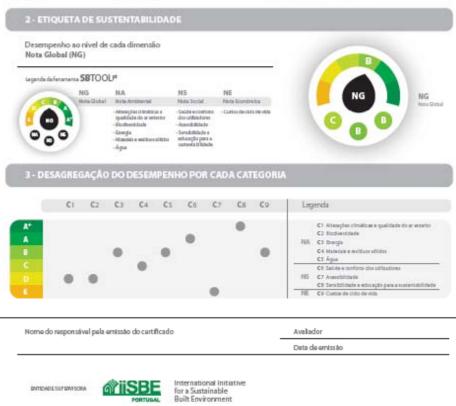
The assessment output is similar to the approach adopted by existing schemes such as EU Energy labelling scheme for white goods and European DisplayTM Campaign posters.

Figure 3: Performance of the solution at the level of each dimension and overall score

Norkshop - Helsinki

1 - IDENTIFICAÇÃO DO EDIFÍCIO

 TIPO
 Edif. Habitação Unifamiliar
 Edif. Habitação Multifemiliar


 MORADA / STTUAÇÃO
 Fisguieta
 Edif. Habitação Multifemiliar

 Localdada
 Fisguieta
 Edif. Habitação Multifemiliar

 Concalho
 Códgo Postal
 ,

 Imável inscritoria
 Cons. do Piog. Predial de
 Edif. Habitação Multifemiliar

 Sob o n^a
 Art. Matricialn^a
 Edif. Habitação Multifemiliar

ASSESSMENT GUIDE

36Tee80- H	58To+8%- H	SETeenW - H
Dimensão Ambiental P14 Categoría: C5-Agua	P14 Dimensão Ambiental	Dimensio Ambiental P14
<text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text>	<figure><figure><text><text><text><text></text></text></text></text></figure></figure>	<caption><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></caption>

FINAL REMARKS

Sustainable design, construction and use of buildings are based on the evaluation of the environmental pressure, functional, societal and economic aspects.

The sustainable design aims higher compatibility between the artificial and the natural environments without compromising the functional requirements of the buildings and the associated costs.

 The actual environmental, societal and economy context shows that there are good opportunities to implement sustainability assessment methods

FINAL REMARKS (cont.)

This methodology contributes to the evolution of the generic methodology and international understanding by introducing an approach taking into account the local social aspects;

The SBTool^{PT} methodology supports steps toward the sustainable design and construction, through the definition of a list of objectives that are easily understandable by all the construction stakeholders and are compatible with the Portuguese construction technology background.

THANK YOU...

17 October 2011